Nuprl Lemma : sum_switch
4,23
postcript
pdf
n
:
,
f
:(
n
),
i
:
(
n
-1). sum(
f
((
i
,
i
+1)(
x
)) |
x
<
n
) = sum(
f
(
x
) |
x
<
n
)
latex
Definitions
i
j
<
k
,
A
B
,
P
&
Q
,
A
,
False
,
P
Q
,
sum(
f
(
x
) |
x
<
k
)
,
{
i
..
j
}
,
x
:
A
.
B
(
x
)
,
t
T
,
,
x
(
s
)
,
(
i
,
j
)
,
SQType(
T
)
,
{
T
}
,
Prop
,
x
.
t
(
x
)
,
Unit
,
P
Q
,
i
=
j
,
,
b
,
b
,
if
b
t
else
f
fi
,
P
Q
Lemmas
ifthenelse
wf
,
assert
wf
,
not
wf
,
bnot
wf
,
eq
int
wf
,
assert
of
eq
int
,
not
functionality
wrt
iff
,
assert
of
bnot
,
iff
transitivity
,
eqff
to
assert
,
eqtt
to
assert
,
bool
wf
,
sum
functionality
,
sum
split
,
sum
wf
,
le
wf
,
flip
wf
,
nat
wf
,
int
seg
wf
origin